1,352 research outputs found

    Generating quantum states of surface plasmon-polariton pairs with a nonlinear nanoparticle

    Full text link
    © 2019 IEEE. In the last few years, materials with strong second-order optical nonlinearity such as gallium arsenide, barium titanate and transition metal dichalcogenides have attracted significant attention, because they for the first time allowed efficient nonlinear optical interactions on the sub-micron scales. One of such nonlinear optical interactions - spontaneous parametric down-conversion (SPDC) - allows the generation of pairs of correlated photons and can enable photon entanglement [1]. This is the foundation of many quantum optical applications ranging from secure communication to ultrafast quantum computing [2]. The key challenges in this field are efficiency and the generation of on-demand quantum states

    Non-local effects in the mean-field disc dynamo. II. Numerical and asymptotic solutions

    Full text link
    The thin-disc global asymptotics are discussed for axisymmetric mean-field dynamos with vacuum boundary conditions allowing for non-local terms arising from a finite radial component of the mean magnetic field at the disc surface. This leads to an integro-differential operator in the equation for the radial distribution of the mean magnetic field strength, Q(r)Q(r) in the disc plane at a distance rr from its centre; an asymptotic form of its solution at large distances from the dynamo active region is obtained. Numerical solutions of the integro-differential equation confirm that the non-local effects act similarly to an enhanced magnetic diffusion. This leads to a wider radial distribution of the eigensolution and faster propagation of magnetic fronts, compared to solutions with the radial surface field neglected. Another result of non-local effects is a slowly decaying algebraic tail of the eigenfunctions outside the dynamo active region, Q(r)r4Q(r)\sim r^{-4}, which is shown to persist in nonlinear solutions where α\alpha-quenching is included. The non-local nature of the solutions can affect the radial profile of the regular magnetic field in spiral galaxies and accretion discs at large distances from the centre.Comment: Revised version, as accepted; Geophys. Astrophys. Fluid Dyna

    Archaeal Communities of Frozen Quaternary Sediments of Marine Origin on the Coast of Western Spitsbergen

    Get PDF
    The archaeal composition of permafrost samples taken during the drilling of frozen marine sediments in the area of the Barentsburg coal mine on the east coast of Grønfjord Bay of Western Spitsbergen has been studied. This study is based on an analysis of the V4 region of the 16S rRNA gene, carried out using next-generation sequencing. The general phyla of the Archaea domain are Euryarchaeota, Bathyarchaeota, Thaumarchaeota, and Asgardarchaea. As a result of a phylogenetic analysis of the dominant operational taxonomic units, representatives of methanogenic and methane- and ammonium-oxidizing archaea, as well as heterotrophic archaea, are found. The methanogenic archaea of Euryarchaeota phylum, Methanobacteria class, are found in permafrost with controversial genesis, while the methane-oxidizing archaea of Methanomicrobia class Methanosarcinales order are found in the marine permafrost at Cape Finneset: the ANME-2a, -2b group in layers of 8.6 and 11.7 m and the ANME-2d group (Candidatus Methanoperedens) in a layer of 6.5 m. Ammonium-oxidizing archaea of phylum Thaumarchaeota is present in all types of permafrost, while the order of Nitrososphaerales is found in permafrost with controversial genesis and the order Nitrosopumilales is in permafrost with marine and controversial genesis. Representatives of phylum Bathyarchaeota are found stratigraphically in the most ancient samples under study. Asgardarchaeota superfylum is excluded in the layers of permafrost with marine genesis and is represented by the phyla Lokiarchaeota, Thorarchaeota, and an unclassified group belonging to this superphylum. The presence of methane, ethylene, and ethane in the permafrost of the first sea terrace of Cape Finneset at a depth of 11.7 m, as well as the composition of the archaeal community, give us reason to assume that, before freezing, microbiological processes of anaerobic methane oxidation took place in it, probably received from Tertiary rocks. The results of both this and previous works present the Spitsbergen permafrost as a rich archive of genetic information of little-studied prokaryotic groups

    Bacterial Communities of Frozen Quaternary Sediments of Marine Origin on the Coast of Western Spitsbergen

    Get PDF
    The bacterial composition of permafrost samples taken during drilling of frozen marine sediments in the area of Barentsburg coal mine on the east coast of Grønfjord Bay of Western Spitsbergen has been studied. The study was based on the analysis of the V4 region of the 16S rRNA gene, carried out using next generation sequencing, as well as using classical microbiological methods (direct luminescence microscopy and aerobic cultivation).The total cell number in permafrost samples ranges from 6.73 ± 0.73 × 106 to 3.37 ± 0.19 107 cells per g. The number of cultivable aerobic bacteria in frozen samples on 1/5 TSA and R2A media ranges from 0 to 6.20 ± 0.45 × 104 CFU/g. Isolates of aerobic bacteria were identified by 16S rRNA gene analysis as representatives of the genera Arthrobacter, Pseudarthrobacter, Psychrobacter, and Rhodoferax. The dominant phyla of the domain Bacteria were Actinobacteria, Proteobacteria, Chloroflexi, Nitrospirae and Firmicutes. As a result of phylogenetic analysis of the dominant operational taxonomic units, representatives of methane oxidizing, sulfate reducing bacteria, as well as heterotrophic bacteria involved in the transformation of organic matter were found

    Quantum States and Phases in Driven Open Quantum Systems with Cold Atoms

    Full text link
    An open quantum system, whose time evolution is governed by a master equation, can be driven into a given pure quantum state by an appropriate design of the system-reservoir coupling. This points out a route towards preparing many body states and non-equilibrium quantum phases by quantum reservoir engineering. Here we discuss in detail the example of a \emph{driven dissipative Bose Einstein Condensate} of bosons and of paired fermions, where atoms in an optical lattice are coupled to a bath of Bogoliubov excitations via the atomic current representing \emph{local dissipation}. In the absence of interactions the lattice gas is driven into a pure state with long range order. Weak interactions lead to a weakly mixed state, which in 3D can be understood as a depletion of the condensate, and in 1D and 2D exhibits properties reminiscent of a Luttinger liquid or a Kosterlitz-Thouless critical phase at finite temperature, with the role of the ``finite temperature'' played by the interactions.Comment: 9 pages, 2 figure

    Quantum dynamics in strong fluctuating fields

    Full text link
    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. Herein, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis the influence of nonequilibrium fluctuations and periodic electrical fields on quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres

    Non-equilibrium coherence dynamics in one-dimensional Bose gases

    Full text link
    Low-dimensional systems are beautiful examples of many-body quantum physics. For one-dimensional systems the Luttinger liquid approach provides insight into universal properties. Much is known of the equilibrium state, both in the weakly and strongly interacting regime. However, it remains a challenge to probe the dynamics by which this equilibrium state is reached. Here we present a direct experimental study of the coherence dynamics in both isolated and coupled degenerate 1d Bose gases. Dynamic splitting is used to create two 1d systems in a phase coherent state. The time evolution of the coherence is revealed in local phase shifts of the subsequently observed interference patterns. Completely isolated 1d Bose gases are observed to exhibit a universal sub-exponential coherence decay in excellent agreement with recent predictions by Burkov et al. [Phys. Rev. Lett. 98, 200404 (2007)]. For two coupled 1d Bose gases the coherence factor is observed to approach a non-zero equilibrium value as predicted by a Bogoliubov approach. This coupled-system decay to finite coherence is the matter wave equivalent of phase locking two lasers by injection. The non-equilibrium dynamics of superfluids plays an important role in a wide range of physical systems, such as superconductors, quantum-Hall systems, superfluid Helium, and spin systems. Our experiments studying coherence dynamics show that 1d Bose gases are ideally suited for investigating this class of phenomena.Comment: to appear in natur

    Resource Queuing System with Preemptive Priority for Performance Analysis of 5G NR Systems

    Get PDF
    One of the ways to enable smooth coexistence of ultra reliable low latency communication (URRLC) and enhances mobile broadband (eMBB) services at the air interface of perspective 5G New Radio (NR) technology is to utilize preemptive priority service. In this paper, we provide approximate analysis of the queuing system with random resource requirements, two types of customers and preemptive priority service procedure. The distinctive feature of the systems – the random resource requirements – allows to capture the essentials of 5G NR radio interface but inherently increases the complexity of analysis. We present the main performance metrics of interest including session drop probability and system resource utilization as well as assess their accuracy by comparing with computer simulations. The developed model is not inherently limited to URLLC and eMBB coexistence and can be utilized in performance evaluation of 5G NR systems with priority-based service discipline at the air interface, e.g., in context of network slicing. Among other conclusions we explicitly show that both session drop and interruption probabilities of low priority traffic heavily depend not only on the intensity of high priority traffic but on stochastic characteristics of the resource request distribution.acceptedVersionPeer reviewe

    Beyond Gross-Pitaevskii Mean Field Theory

    Full text link
    A large number of effects related to the phenomenon of Bose-Einstein Condensation (BEC) can be understood in terms of lowest order mean field theory, whereby the entire system is assumed to be condensed, with thermal and quantum fluctuations completely ignored. Such a treatment leads to the Gross-Pitaevskii Equation (GPE) used extensively throughout this book. Although this theory works remarkably well for a broad range of experimental parameters, a more complete treatment is required for understanding various experiments, including experiments with solitons and vortices. Such treatments should include the dynamical coupling of the condensate to the thermal cloud, the effect of dimensionality, the role of quantum fluctuations, and should also describe the critical regime, including the process of condensate formation. The aim of this Chapter is to give a brief but insightful overview of various recent theories, which extend beyond the GPE. To keep the discussion brief, only the main notions and conclusions will be presented. This Chapter generalizes the presentation of Chapter 1, by explicitly maintaining fluctuations around the condensate order parameter. While the theoretical arguments outlined here are generic, the emphasis is on approaches suitable for describing single weakly-interacting atomic Bose gases in harmonic traps. Interesting effects arising when condensates are trapped in double-well potentials and optical lattices, as well as the cases of spinor condensates, and atomic-molecular coupling, along with the modified or alternative theories needed to describe them, will not be covered here.Comment: Review Article (19 Pages) - To appear in 'Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment', Edited by P.G. Kevrekidis, D.J. Frantzeskakis and R. Carretero-Gonzalez (Springer Verlag
    corecore